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SUMMARY 

A 2x2 zero-sum e;ame is played continually 
by 2 people, the object being either survival 
or ruin of the ODPonent. There is a constant 
sum of money in the game. It is shown that in 
f:eneral the garne h3s a solution and that these 
two motives are eou i valent. Methods for cal­
culating the soluiion are eiven and a particular 
example is worked out. A singular example is 
given with a discussion. A game is shown to be 
singular only if on a sinr;le ~play there is a 
possibility of a draw (there is a zero entry in 
the matrix) • 

GAMES OF SURVIVAL 

),Iel vin Hausner 

~:'le cnnsider the following "p;ame": Players I and II 

olay the two-person zero-sum game whose payoff matrix (to I) 

is 

A 

Each ;:oL1yer starts v.rith a fixed amount of money, and they play 

continually until one of the players runs out of money. Of 

course, the total a'Tiount n of money in the game is fixed. 

Some general remarks are in order. In the game 

A = (-~ ? ) 
player I can r;uarrmtee h). s survival by playing row 1 • If he 

announces this strategy, ;;layer II plays column 2 and both 

players guarantee survival. But if I's object is to ruin II, 

he must eventually play row 2 with a positive probability 

(~e assume that ootional strategies are announced). He then 

-1-
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subjects himself to the chance of ruin. Hence, we have two 

possible (and possibly conflicting) motives: survival and 

ruin of the opponent. 

Furthermore, as in any tvJO-person zero-sum game, we may 

eliminate dominated rows and dominatinr; columns. This may be 

done for eithe r objective. Therefore, we shall assume that 

A has no saddle-point. If we normalize by taking a 1 1 =max aij' 

then I loses if a 11 < 0. If a 11 0, and a 12 < O, II plays 

column 2 and always wins unless a 22 = 0. But if a 11 = a 22 = O, 

a 12 < 0 the solution is clear if a 21 = 0. But if a 21 < O, 

player II randomizes equally between columns and 2 and he ·wins 

with probability 1. Hence, we may take a 11 > 0. If a 1 :-! > O, 

player I wins, so that we may take a 12 $ 0. If a 21 > O, player 

II will play column 2 and the outcome is determined according 

as max (n 21 , a 22 ) ? 0. Hence, •t~e may take a 21 ~ O. Since no 
< 

sadr1le-point occurs, we have a 22 > a 12 , a 21 • ·#e summarize as 

follows: a 11 > 0; a 21 , a 12 ~ 0; a 12 , a 21 < a 22 ~ a 1 ,. 

','Je now consider the r;ame where I wants to maximize his 

probability of survival and II wants to minim:i?.e I 1 s prob-

ability of survival. A mixed strategy for I is a sequence 

(p,, ••• 'Pn-1) of probabilities. P is the probability of k 

I playing row 1 when he has k units of money. (We assume here 

that a player 1 s strategy is dictated by his money--not the past 

history of the game.) In a pure stratesy pk = 1 or 0. A similar 

d efinj t ion of a strategy ( r 1 , • • • , r n- 1 ) exists for player II. 

rk is the probability of playing column 1 when player I has k 

units of money. ':Je shall shmv tho.t under certain conditions the 

~arne has a value and associated mixed strategies. 
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First consider the minorant version of the game: I states 

his mixed strategy. II then chooses his pure strategy (he 

has n-1 
2 such strategies), which minimizes I's probability 

of survival, giving f ( p1 , ••• , pn_ 1 ). We assume that f 

is continuous, and that the maximum is attained. (Later, we 

show that this is not necessarily true.) Player I then US!?S 

the strategy (p 1 , ••• , pn_
1

) and is 8.ssured of the probability 

v(k) of survival if he has k units of money. Player II can 

restrict this probability to exactly v(k). We have 

( 1 ) 

{

v(r) = 0, r ~ 0 

v(r) = 1, r > n = 
and 

v(k) = max 
0~~1 

min (rv ( a 1 1 + k ) + ( 1 - p) v ( a 2 1 + k ) J . 
l pv ( a 1 2 + k ) + ( 1 - p) v ( a 2 2 + k ) 

Clearly v(k) is monotonic increasing with k. Since A has 

no saddle-point, max min occurs when 

(2) pv(a 11 + k) + (1-p) v(a21 + k) = pv(a 12 + k) + (1-p) v(a22 + k). 

Hence, 

(3) 
v(a22 + k) - v(a21 + k) 

v(a22 + k) + v(a 11 + k)- v(a 12 + k)- v(a21 + k) 

( 4) v ( k) = 
v(a22 + k) v(a 11 + k)- v(a 12 + k) v(a 21 + k) 

_.._......__, ____ ,_.....,_,~------""-~'·_..._, _ _, _____ . 
v(a22 + k) + v(a 11 + k) - v(a 12 + k) - v(a21 + k) 

.".ssuming that aij is an integer, these equations form n-1 

eouations in n-1 ''unknowns" v ( k) • If the denominator is o, 
then pk is arbitrary and the numerators involved are o. 
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It is important to observe that the probability v(k) 

of I's survival is indepenrlent of II's strategy if I 

plays optimally. 

In the some way, we consider the ma jorant gom e, where II 

must state his mixed strategy and I chooses his str0ctegy, 

afterwards. Letting V(k) be the probability of I's survival 

if both play optimally, I having k units, we have 

( 1 ) ' 

and 

(v(r) = 0, r ~ 0 

l_y(r} = 1, r ~ n 

V(k) = min 
r 

max 
jrV(a 1 1 + k) + (1-r) V(a 12 + k), 

L:v(a21 + k) + (1-r) V(a 22 + k). 

~s before, ~in max occurs when 

(2) 1 rV(a 11 + k) + (1-r) V(a 12 + k) rV(a 21 + k) + (1-r) V(a 22 + k), 

so thst 

(3) T 

V(a 22 + k) - V(a 12 + k} 
rk = -----·-----·----------- -·------

V(a22 + k) + V(a 1 1 + k) - V(a 12 + k) - V(a 21 + k) 
• 

Again, th2 probability of I's non-ruin is independent of I's 

strategy, provided II plays optimally. We have assumed that 

the rJ.naloc:,ous F ( r 1 , • • • , r 1 ) n- which II minimizes is continuous. 

Vve now prove that the game has a value. Suppose that I 

plays his strategy (3) of the minorant game and II plays his 

strateE:;y (3)' of the majorant game. Since the payoff for (3) 

is independent of II' s play, I' s probability of survival is 

v(k). Dut the payoff for (3)' is independent of I's play and 

hence I 1 s probability of survival is V(k}. Hence, V(k) = v(k). 

The ga:ne has a solution: I can .guarantee himself a probabj lity 
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> v{k) of survival and II can Qiarantee a probability = 
~-'v(k) of I' s survival. 

Both optimal strategies are given in terms of v(k) 

which was defined intrinsically. In practice, the system of 

eouations (4) will uniquely define v(k) subject to the 

conditions ( 1) and 0 ~ v(k) ~·· 1 and v(k + 1) :;; v(k). Of 

course, similar results occur when the play is for II' s 

survival. 

':! e offer an example for n = 4. The play is for I's 

survival: 

A = ( -~ -1 ) ' n = 4. 1 

From (4) , we obtain 

v(3) v(2) - v(O) v ( -1 ) v(3) v(2) 
v ( 1 ) = = 

v(3) + v(2) - v(O) - v(-1) v(3) + v(2) 

v(4) v ( 3) - v ( 1 ) v(O) v(J) 
v(2) = 

v(4) + v(3) - v ( 1 ) - v(O) 1 + v(3) - v ( 1) 

v ( 5) v(4) - v(2) v ( 1 ) - v(2) v ( 1 ) 
v(3) = = • 

v ( 5) + v(4) - v(2) - v ( 1) 2 - v(2) - v ( 1) 

Observe that the denominators obviot1sly do not vanish. These 

eouations may be solved and have one solution: 

1 
v(2) = 2 

\[2 
v(3) =-

2 

Substituting in equgtions (3) and (3) ', 1tfe obtain the optirral 

strategies: 
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==J2 1 ' 
1 2 - J2 P1 - P2 =- P3 = 2 ' 

={2 1 , 1 
f2 -[2 - 1 r, - r2 = - 2' r3 = • 

Sum:-norizing, I's unicme optimal strategy is (.414,.5,.585). 

II's unique optimal strategy is (.414,.293,.414). The value 

o f th e game ( t o I ) is ( 2o3 5 707l 'Thus, l'f I has l • 7 ,. ,. ,. 

unit he has probability .293 of survival, etc. 

Th£ sa~e play occurs for Il's survival, with complementary 

probabilities of survival. This is so because the opti~al strat-

ec;ies must obviously be mixed, so that there is zero probability 

of both olayers survivinp;. Hence, I may equivalently play for 

his own survival. This feature is true of any game with no 

zero entry: 

The case 

which was ~ven before, illustrates the point that f(p 1 , 

mentioned before is not necessarily continuous. The play for 

' Pn-1) 

I's survival is ::J.s ex_:;ected (we take n = 2): v(1) = 1, p 1 = 1, 

r 1 = 0. But in the play for II's survival we consider the 

rnatri x 

( 
-1 1 ) 

Bo = 0 -1 

and interchc:m;..;e the players. ':Je ha V8, using (4) , ( 3) and (3) 1 , 
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v(1) = O, p 1 = 0, r 1 = 1. If this strategy is actually used, 

player I survives. 'llhere is the contrndiction? It lies in 

the continuity of f. For suppose olayer II (in the game B0 ) 

announces a strategy of 1 - (_, r)' f small and positive .. 

Player I either may use the strategy (1, 0) in which case 

he survives t"i th probability C , or the strategy ( 0, 1) in 

which case (because the game continues indefinitely) he surv:L ves 

V>rith probability 0. But if E..= 0, I survives with probability 

by choosing row 2. Hence, II may bring I's probability 

of survival as close to zero as he wishes without the possibility 

of reaching zero. In an actual play, C wou1 d be taken very small 

and II would 2.lmost guarantee I' s ruin. 

In view of the above rerrtarks, we may state the following 

theorem: 

Theorem: Let a 11 , a 22 >O, a 12 , a 21 <. 0, and let n 

be arbitrary. Then the gmne has a solution. 'rhe plays for 

I's survival and for II's ruin are equivalent, and vice-v~~rsa. 

mhb 




